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Exercice 1 : Oscillateur harmonique quantique a 1’échelle macroscopique

1. Calculons d’abord I’énergie totale de 'oscillation. A I'extrémité x = j:% de l'oscillateur, cette
énergie est
1 L? mw?L?
U= -mw>— =
2" 8

L’énergie d’'un quantum est AE = hw. Le nombre de quanta est donc :

N — U _me2_ 0.1 kg x 2s71 x0.01 m?
~ AEFE  8h  8x1.05x 10734 kg m2 s~!

=2.38 x 10%°

2. L’énergie de I'état fondamental est

1
E():—hw
2

~ 1.05 x 10734 J.-Sx2¢s7!

2
~ 10~3** Joules

Pour calculer 'amplitude 2z, de l'oscillation, il faut poser cette énergie égale a 1'énergie
potentielle a I'extrémité de 1'oscillation.
1

Ey = §mw2x§

2x 10734 ]
Tog= ] ——
0 0.1 kg x 4572
~223x 107" m=223x10"4
L’oscillation de point zéro pour cet oscillateur harmonique macroscopique est donc caracté-

risée par un déplacement xy de l'origine, de l'ordre d’un dixiéme de millioniéme de la taille
d’un atome.
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Exercice 2 : Le demi-oscillateur harmonique

1. Le potentiel donné impose la condition au bord (0) = 0 pour les fonctions d’onde .
D’ailleurs, I’équation de Schrodinger dans la région x > 0 est la méme que pour le cas
de loscillateur harmonique (OH). Donc, c¢’est suffisant de trouver des solutions du probléme
de 'OH avec 1(0) = 0. On sait que les fonctions paires ont les propriétés f(—y) = f(y) et
f'(—y) = —f(y), tandis que les impaires ont les propriétés f(—y) = —f(y) et f'(—y) = f(y).
En particulier pour les paires on a f'(0) = 0 et pour les impaires on a f(0) = 0 (par conti-
nuité¢). Donc les solutions impaires de 'OH (celles avec n impair) sont aussi solutions du
demi-oscillateur, dans la région = > 0. L’équation de Schrodinger étant la méme, les énergies
sont les mémes.

2. L’équation de Schrédinger étant la méme que pour I’OH dans la région x > 0, les solutions
sont un sous-espace des solutions de ’'OH, fixé par la condition ¥(0) = 0. On a déja démontré
que les solutions impaires de I’OH sont des solutions pour le demi-oscillateur, montrons que
les solutions paires de 'OH ne sont pas solutions pour le demi-oscillateur. Ces fonctions ont
la propriété ¢’ (0) = 0; si elles avaient aussi la propriété requise 1(0) = 0, elles seraient nulles
avec dérivée nulle dans le point x = 0. Donc par les propriétés des équations différentielles
homogénes de deuxiéme ordre, elles seraient nulles partout. Donc elles ne peuvent pas avoir
la propriété 1(0) = 0 et elles ne sont pas solutions du demi-oscillateur.

Exercice 3 : L’oscillateur harmonique “ouvert”

1. L’état fondamental de loscillateur harmonique est ¥ (x) = Be~**" Dans lintervalle z €
[—00, L], cette fonction doit résoudre I’équation différentielle :

B dp 1

- %w -+ §mw2x2w(x) = E¢(I)
72 d (—2axe*a12> 1 ) )
——B — —mw?2?Be " = EBe
27;1 dx 2 1 (1)
2.2 —ax? 2 2 —ax? —ax?
—%(—2a+40zx)e +§mwxe = Fe

h? 2h2a? 1
a ax2+§mw2$2—E:0

m u

Pour satisfaire cette égalité, il faut éliminer séparément les termes constants et les termes en
2? car 2 peut prendre un continuum de valeurs £ = h%a et m?w? = 4h%a?. Ce qui établit des
liens entre «, F et w en supposant m fixé.

Dans la région = € [L, o], on aura ¢ (z) = Ae~“® qui résout I'équation de Schrédinger pour

un potentiel U constant et £ < U. On a

—%AC%’C’” + (U, — E)Ae™%® =0
02 — Qm(Ul—E)



La fonction d’onde est donc

_LQE/'w?

Ae =€ x> L

Comme vu avant, le lien entre F et w s’obtient en éliminant «.

_2E
E="2ou w==
Ce résultat nous dit que, si pour ce probléme on veut que 1’état fondamental soit de la forme
U(z) e~ dans z € [—o0, L], alors il faut que E = % pour que ce soit la solution de
I’equation de Schrodinger. Si maintenant on veut remplir la condition au bord en x = L, E
va devoir satisfaire une autre condition. Cela implique que ce probléme n’admet de solutions
que pour certaines valeurs de w. Les conditions au bord en x = L donnent :

Be™oL® = pe~CL
—2aLBe Y = —CAe Ok
En divisant les deux équations, on a :
2aL, =C
47712L2E2 — 2m(U1—E)
72

gmL E? + E— U1 =0
E? +
FE =

=0 (2)

2mL2

_4mL2 + 16m 2L4 + 2mL2 Uy

4;1[,2 (\/ 1+ 8mL2U1 1)

qui est la condition £ = E(L,U;). A remarquer que la solution avec ” —” donnerait E < 0
qui n’est pas physiquement acceptable.

La deuxiéme condition au bord va déterminer la constante B/A (car aprés une des deux
constantes A ou B sera déterminée par la norme). En prenant le log de la premiére équation :

logZ —al?=-CL
log & =al?—CL

mais on sait que C' = 2aL, donc
logg =al?—-2al* = —al?
On doit donc avoir :
B = Ae ¥’
Pour conclure, le probléme n’admet une solution du type indiqué dans la donnée que si :

_ 2E(L,Uy)
N h



Exercice 4 : Question de type examen

Les énergies propres du systéme, proposé par cette équation de Schrodinger, sont celles dé-
crites par la proposition 4.

Le terme potentiel de I’Hamiltonien proposé dans ce probléme peut étre réécrit en complétant

le carré. )

1 55 IR a 2 o
—mw T’ + ar = —mw <x+ ) — 3
2 2 mw? 2mw? )
Le premier terme de ce potentiel correspond a celui d’un oscillateur harmonique centré en
To = —~23. Ainsi 'équation de Schrodinger de ce probléme peut étre exprimée en effectuant
le changement de variable T = x + —%5.

2 1 2
O S (@) 4 T () — 5

~
Oscillateur Harmonique

V() = Ent (2) (4)

2mw?

Finalement, en utilisant ’expression pour les énergies propres de 1’oscillateur harmonique, les
niveaux d’énergie pour ce probléme peuvent étre déterminés.

By = o (n+ 2  en (5)
" "y e



