
2024-2025

Physique générale : quantique, Corrigé 9
Assistants et tuteurs :

elena.acinapura@epfl.ch
sara.alvesdossantos@epfl.ch
felice.bordereau@epfl.ch

jeanne.bourgeois@epfl.ch
sofia.brizigotti@epfl.ch
thomas.chetaille@epfl.ch
marco.dimambro@epfl.ch

leo.goutte@epfl.ch
douaa.salah@epfl.ch

arianna.vigano@epfl.ch

Exercice 1 : Oscillateur harmonique quantique à l’échelle macroscopique

1. Calculons d’abord l’énergie totale de l’oscillation. A l’extrémité x = ±L
2
de l’oscillateur, cette

énergie est

U =
1

2
mω2L

2

4
=
mω2L2

8

L’énergie d’un quantum est ∆E = ~ω. Le nombre de quanta est donc :

N =
U

∆E
=
mωL2

8~
=

0.1 kg × 2 s−1 × 0.01 m2

8× 1.05× 10−34 kg m2 s−1
= 2.38× 1030

2. L’énergie de l’état fondamental est

E0 =
1

2
~ω

=
1.05× 10−34 J · S× 2 s−1

2
' 10−34Joules

Pour calculer l’amplitude 2x0 de l’oscillation, il faut poser cette énergie égale à l’énergie
potentielle à l’extrémité de l’oscillation.

E0 =
1

2
mω2x20

x0 =

√
2× 10−34 J

0.1 kg × 4s−2

≈ 2.23× 10−17 m = 2.23× 10−7Ȧ

L’oscillation de point zéro pour cet oscillateur harmonique macroscopique est donc caracté-
risée par un déplacement x0 de l’origine, de l’ordre d’un dixième de millionième de la taille
d’un atome.
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Exercice 2 : Le demi-oscillateur harmonique

1. Le potentiel donné impose la condition au bord ψ(0) = 0 pour les fonctions d’onde ψ.
D’ailleurs, l’équation de Schrödinger dans la région x > 0 est la même que pour le cas
de l’oscillateur harmonique (OH). Donc, c’est suffisant de trouver des solutions du problème
de l’OH avec ψ(0) = 0. On sait que les fonctions paires ont les propriétés f(−y) = f(y) et
f ′(−y) = −f(y), tandis que les impaires ont les propriétés f(−y) = −f(y) et f ′(−y) = f(y).
En particulier pour les paires on a f ′(0) = 0 et pour les impaires on a f(0) = 0 (par conti-
nuité). Donc les solutions impaires de l’OH (celles avec n impair) sont aussi solutions du
demi-oscillateur, dans la région x > 0. L’équation de Schrödinger étant la même, les énergies
sont les mêmes.

2. L’équation de Schrödinger étant la même que pour l’OH dans la région x > 0, les solutions
sont un sous-espace des solutions de l’OH, fixé par la condition ψ(0) = 0. On a déjà démontré
que les solutions impaires de l’OH sont des solutions pour le demi-oscillateur, montrons que
les solutions paires de l’OH ne sont pas solutions pour le demi-oscillateur. Ces fonctions ont
la propriété ψ′(0) = 0 ; si elles avaient aussi la propriété requise ψ(0) = 0, elles seraient nulles
avec dérivée nulle dans le point x = 0. Donc par les propriétés des équations différentielles
homogènes de deuxième ordre, elles seraient nulles partout. Donc elles ne peuvent pas avoir
la propriété ψ(0) = 0 et elles ne sont pas solutions du demi-oscillateur.

Exercice 3 : L’oscillateur harmonique “ouvert”

1. L’état fondamental de l’oscillateur harmonique est ψ(x) = Be−αx
2 . Dans l’intervalle x ∈

[−∞, L], cette fonction doit résoudre l’équation différentielle :

− ~2

2m

d2ψ

dx2
+

1

2
mω2x2ψ(x) = Eψ(x)

− ~2

2m
B
d
(
−2αxe−αx

2
)

dx
− 1

2
mω2x2Be−αx

2

= EBe−αx
2

− ~2

2m

(
−2α + 4α2x2

)
e−αx

2

+
1

2
mω2x2e−αx

2

= Ee−αx
2

~2α
m
− 2~2α2

u
x2 +

1

2
mω2x2 − E = 0

(1)

Pour satisfaire cette égalité, il faut éliminer séparément les termes constants et les termes en
x2 car x2 peut prendre un continuum de valeurs E = ~2α

m
et m2ω2 = 4~2α2. Ce qui établit des

liens entre α, E et ω en supposant m fixé.
Dans la région x ∈ [L,∞], on aura ψ(x) = Ae−Cx qui résout l’équation de Schrödinger pour
un potentiel U constant et E < U . On a

− ~2
2m
AC2e−Cx + (U1 − E)Ae−Cx = 0

C2 = 2m(U1−E)
~2

C =
√

2m(U1−E)
~2

2



La fonction d’onde est donc

ψ(x) =

{
Be−

mE
~2 x

2

x < L
Ae−Cx x > L

Comme vu avant, le lien entre E et ω s’obtient en éliminant α.
E = ~ω

2
ou ω = 2E

~ .

Ce résultat nous dit que, si pour ce problème on veut que l’état fondamental soit de la forme
ψ(x) ∝ e−αx

2 dans x ∈ [−∞, L], alors il faut que E = ~ω
2

pour que ce soit la solution de
l’equation de Schrödinger. Si maintenant on veut remplir la condition au bord en x = L, E
va devoir satisfaire une autre condition. Cela implique que ce problème n’admet de solutions
que pour certaines valeurs de ω. Les conditions au bord en x = L donnent :

Be−αL
2

= Ae−CL

−2αLBe−αL
2

= −CAe−CL

En divisant les deux équations, on a :

2αL = C
2mLE~2 = C

4m
2L2E2

~4 = 2m(U1−E)
~2

2mL
2E2

~2 + E − U1 = 0

E2 + ~2
2mL2E − ~2

2mL2U1 = 0

E = − ~2
4mL2 +

√
~4

16m2L4 + ~2
2mL2U1

= ~2
4mL2

(√
1 + 8mL2U1

~2 − 1

)
(2)

qui est la condition E = E(L,U1). A remarquer que la solution avec ” − ” donnerait E < 0
qui n’est pas physiquement acceptable.

La deuxième condition au bord va déterminer la constante B/A (car après une des deux
constantes A ou B sera déterminée par la norme). En prenant le log de la première équation :

log B
A
− αL2 = −CL

log B
A

= αL2 − CL

mais on sait que C = 2αL, donc

log
B

A
= αL2 − 2αL2 = −αL2

On doit donc avoir :
B = Ae−αL

2

Pour conclure, le problème n’admet une solution du type indiqué dans la donnée que si :

ω =
2E (L,U1)

~

3



Exercice 4 : Question de type examen

Les énergies propres du système, proposé par cette équation de Schrödinger, sont celles dé-
crites par la proposition 4.

Le terme potentiel de l’Hamiltonien proposé dans ce problème peut être réécrit en complétant
le carré.

1

2
mω2x2 + αx =

1

2
mω2

(
x+

α

mω2

)2
− α2

2mω2
(3)

Le premier terme de ce potentiel correspond à celui d’un oscillateur harmonique centré en
x0 = − α

mω2 . Ainsi l’équation de Schrödinger de ce problème peut être exprimée en effectuant
le changement de variable x̃ = x+ α

mω2 .

− ~2

2m

d

dx̃
ψ (x̃) +

1

2
mω2x̃2ψ (x̃)︸ ︷︷ ︸

Oscillateur Harmonique

− α2

2mω2
ψ (x̃) = Enψ (x̃) (4)

Finalement, en utilisant l’expression pour les énergies propres de l’oscillateur harmonique, les
niveaux d’énergie pour ce problème peuvent être déterminés.

En = ~ω
(
n+

1

2

)
− α2

2mω2
, ∀n ∈ N (5)
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